Multi-level regulation and metabolic scaling.

نویسندگان

  • Raul K Suarez
  • Charles A Darveau
چکیده

Metabolic control analysis has revealed that flux through pathways is the consequence of system properties, i.e. shared control by multiple steps, as well as the kinetic effects of various pathways and processes over each other. This implies that the allometric scaling of flux rates must be understood in terms of properties that pertain to the regulation of flux rates. In contrast, proponents of models considering the scaling of branching or fractal-like systems suggest that supply rates determine metabolic rates. Therefore, the allometric scaling of supply alone provides a sufficient explanation for the allometric scaling of metabolism. Examination of empirical data from the literature of comparative physiology reveals that basal metabolic rates (BMR) are driven by rates of energy expenditure within internal organs and that the allometric scaling of BMR can be understood in terms of the scaling of the masses and metabolic rates of internal organs. Organ metabolic rates represent the sum of tissue metabolic rates while, within tissues, cellular metabolic rates are the outcome of shared regulation by multiple processes. Maximal metabolic rates (MMR, measured as maximum rates of O2 consumption, VO2max) during exercise also scale allometrically, are also subject to control by multiple processes, but are due mainly to O2 consumption by locomotory muscles. Thus, analyses of the scaling of MMR must consider the scaling of both muscle mass and muscle energy expenditure. Consistent with the principle of symmorphosis, allometry in capacities for supply (the outcome of physical design constraints) is observed to be roughly matched by allometry in capacities for demand (i.e. for energy expenditure). However, physiological rates most often fall far below maximum capacities and are subject to multi-step regulation. Thus, mechanistic explanations for the scaling of BMR and MMR must consider the manner in which capacities are matched and how rates are regulated at multiple levels of biological organization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Metabolic Regulation and Anti-Oxidative Effect of Ferula Asafoetida Ethanolic Extract on children with leukemia

Abstract Background: Childhood leukemia, the most common type of cancer in children and teens, is a cancer of the white blood cells. As antioxidants can promote immune system against all types of cancer, the aim of this study was to explore the metabolic regulation and anti-oxidative effect of sesquiterpen-rich extract of Ferula Asafoetida (FA) on children with leukemia. Materials and Met...

متن کامل

Body-Mass Scaling of Metabolic Rate: What are the Relative Roles of Cellular versus Systemic Effects?

The reason why metabolic rate often scales allometrically (disproportionately) with body mass has been debated for decades. A critical question concerns whether metabolic scaling is controlled intrinsically at the intracellular level or systemically at the organismal level. Recently, the relative importance of these effects has been tested by examining the metabolic rates of cultured dermal fib...

متن کامل

A new 2D block ordering system for wavelet-based multi-resolution up-scaling

A complete and accurate analysis of the complex spatial structure of heterogeneous hydrocarbon reservoirs requires detailed geological models, i.e. fine resolution models. Due to the high computational cost of simulating such models, single resolution up-scaling techniques are commonly used to reduce the volume of the simulated models at the expense of losing the precision. Several multi-scale ...

متن کامل

High-performance and Low-power Clock Branch Sharing Pseudo-NMOS Level Converting Flip-flop

Multi-Supply voltage design using Cluster Voltage Scaling (CVS) is an effective way to reduce power consumption without performance degradation. One of the major issues in this method is performance and power overheads due to insertion of Level Converting Flip-Flops (LCFF) at the interface from low-supply to high-supply clusters to simultaneously perform latching and level conversion. In this p...

متن کامل

Scaling of Metabolic Scaling within Physical Limits

Both the slope and elevation of scaling relationships between log metabolic rate and log body size vary taxonomically and in relation to physiological or developmental state, ecological lifestyle and environmental conditions. Here I discuss how the recently proposed metabolic-level boundaries hypothesis (MLBH) provides a useful conceptual framework for explaining and predicting much, but not al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 208 Pt 9  شماره 

صفحات  -

تاریخ انتشار 2005